EPA's Newest Draft Nonroad Emission Inventory Model (NONROAD)

12th International Emission Inventory
Conference

San Diego, California

April 28 - May 1, 2003

Craig A. Harvey
US Environmental Protection Agency

Outline

- Introduction / Model Overview
- Model Modifications
 - Model Inputs
 - Code Modifications
 - Geographic Allocations
- Inventory Impacts
- Questions and Answers

NONROAD Team

- Office of Transportation and Air Quality (Assessment and Standards Division)
 - Penny Carey
 - Craig Harvey
 - Greg Janssen
 - Jim Warila
 - Rich Wilcox

nonroad@epa.gov

Model Overview

- Stand Alone (No User Data Necessary)
- All Nonroad Sources (except locomotives, aircraft and commercial marine)
- Differentiated by Equipment Type and Other Characteristics
- HC, CO, NO_x, PM, SO_x, CO₂
- Fuel Consumption

NONROAD Model Versions

* June 1998: Original Draft Release

April 1999: highway tier-2/gasoline sulfur rule

* June 2000: 2007 HD Diesel Highway Rule & 1999 NEI/Trends v1.0. 1996 Diesel PM used in NATA.

Nov 2000: final finding & rec vehicle/large SI ANPRM & 2000 NEI & 1999 NTI. 1999 NEI v1.5 & draft v2.

July 2001: rec vehicle & large SI NPRM

May 2002: <u>Draft NONROAD 2002</u>, NEI 1970-2001 various years (1999 final v2). NTI for 1990, 96, 99. (and basis for RV/LgSI FRM & nonroad diesel NPRM)

^{* =} publicly released model

Model Overview

Exhaust Emissions Calculation

$I = \mathsf{EF} \cdot \mathsf{DF} \cdot \mathsf{Act} \cdot \mathsf{LF} \cdot \mathsf{RP} \cdot \mathsf{Pop}$

I = Exhaust Emissions Inventory (ton/year)

EF = Emission Factor (g/hp-hr)

DF = Deterioration Factor

Act = Activity (hours/year)

LF = Load Factor

RP = average rated power (hp)

Pop = Equipment population (units)

Default Inputs for Diesel Engines in the NONROAD model

Diesel Engines: Variables modified for NONROAD2002

- Load Factors (LF)
- Zero-hour Steady-state Emission Factors (EF)
- Transient Adjustment Factors (TAFs)
- Deterioration Factors (DFs)
- Median Life
- Base-Year Populations

Diesel Exhaust Emission Inputs: Load Factor

- In NONROAD HDD 2007
 - Load Factors from 1998 PSR Partslink
 - assigned individual LF to specific applications
- In NONROAD2002
 - load factors developed from transient-cycle development project
 - Seven cycles developed, designed to mimic equipment operation

Agricultural Tractor Backhoe loader Crawler Dozer Rubber-Tire Loader Skid-steer loader

Arc Welder

Excavator

Diesel Exhaust Emission Inputs: Transient-cycle Load Factors

Cycle	Load Factor	Assignment	Avg
Agricultural Tractor	0.78	high	
Crawler Dozer	0.58	high	
Excavator	0.53	high	0.59
Rubber-tire Loader	0.48	high	
Skid-steer Loader	0.23	low	
Backhoe-Loader	0.21	low	0.21
Arc Welder	0.19	low	
None (steady-state)		average 7-cycle	0.43

Diesel Exhaust Emission Inputs: Emission Factors

Three key components:

EF = ZHL x TAF x DF

ZHL = "zero hour" levels -- from new engine test data

TAF = transient adjustment factor -- adjusts the ZHLs that are derived from steady-state lab testing, to account for how engine speed and load variations in the field affect emissions.

DF = deterioration factor -- adjusts for age-related deterioration and malmaintenance

The model also adjusts the PM EF for differences between test fuel sulfur level and in-use sulfur level

Diesel Exhaust Emission Inputs: Comparison of PM ZHLs

	PM ZMLs, g/hp-hr								
		Tier 1		Tier 2			Tier 3		
Max HP	Tier 1	HD07 T1	ratio:HD07	Tier 2	HD07 T2	ratio:HD07	Tier 3	HD07 T3	ratio:HD07
11	0.4474	0.52	0.9	0.50	0.44	1.1	na	na	na
16	0.2665	0.52	0.5	0.2665	0.36	0.7	na	na	na
25	0.2665	0.36	0.7	0.2665	0.36	0.7	na	na	na
50	0.3389	0.38	0.9	0.3389	0.32	1.1	na	na	na
100	0.4730	0.37	1.3	0.24	0.24	1.0	0.30	0.24	1.3
175	0.2799	0.22	1.3	0.18	0.18	1.0	0.22	0.18	1.2
300	0.2521	0.19	1.3	0.1316	0.12	1.1	0.15	0.12	1.3
600	0.2008	0.12	1.7	0.1316	0.12	1.1	0.15	0.12	1.3
750	0.2201	0.14	1.6	0.1316	0.12	1.1	0.15	0.12	1.3
>750	0.1934	0.13	1.5	0.1316	0.12	1.1	na	na	na

No changes to BSFCs

Diesel Exhaust Emission Inputs: Transient Adjustment Factors

- Still based on cycle test data, BUT
 - Added data for excavator cycle (7 cycles in all)
 - Combined Tier 0 and Tier 1 data (not statistically different based on Student's t-test)
 - Average of ratios used vs ratio of averages
 - Binned cycle data by load factor category
- TAF assignments to equipment type no longer vary by tier

Diesel Exhaust Emission Inputs: Transient Adjustment Factors

			HC		CO		NOx	
	Load		Cycle		Cycle		Cycle	
Cycle	Factor	Assignment	TAFs	Average	TAFs	Average	TAFs	Average
Agricultural Tractor	0.78		0.83		0.50		0.98	
Crawler Dozer	0.58	High	0.88	1.05	1.50	1.53	0.98	0.95
Rubber-Tire Loader	0.48	High	1.07	1.05	3.68	1.55	0.96	0.95
Excavator	0.53		1.40		0.44		0.87	
Backhoe Loader	0.21		2.23		2.66		1.05	
Skid-Steer Loader	0.23	Low	1.49	2.29	1.83	2.57	0.95	1.10
Arc Welder	0.19		3.16		3.22		1.31	

			PM		BSFC	
Cycle	Load Factor	Assignment	Cycle TAFs	Average	Cycle TAFs	Average
Agricultural Tractor	0.78		0.71		0.98	
Crawler Dozer	0.58	Lliah	1.29	1.23	0.99	1.01
Rubber-Tire Loader	0.48	High	2.02	1.23	1.04	1.01
Excavator	0.53		0.89		1.03	
Backhoe Loader	0.21		2.07		1.16	
Skid-Steer Loader	0.23	Low	1.74	1.97	1.09	1.18
Arc Welder	0.19		2.11		1.29	

Transient Adjustment Factors: Key Issue for Tier 3 Engines

Lacking a transient certification test, Tier 3 engine designs with EGR are likely to have higher transient emissions

PM for Tier 3 Engines: TAF increase: 20%

 assume EGR increases transient PM due to the time lag for clearance of the intake system

NOx for Tier 3 Engines: TAF increase: 10%

 assume EGR increases transient NOx due to EGR being turned off during transients

Diesel Exhaust Emission Inputs: Deterioration Factors

The HDD 2007 version uses very low DFs for all pollutants based on highway engine data in MOBILE6

HC, CO, and NOx (all tiers):

- no clear trend from new (highway-only) data
- so stick with existing DFs, BUT
- now using simple unweighted averages of DFs by hp category

PM (all tiers):

• **new approach**: use ARB OFFROAD DF: 47% over the median life (DF=1.47)

All DF's still capped at one median life

Diesel Exhaust Emission Inputs: Comparison of DFs

	Model		n Factor (% ir	ncrease/ % us	eful life)*
Pollutant	Version	Tier 0	Tier 1	Tier 2	Tier 3
нс	HD07	0.059	0.014	0.013	0.007
	2002	0.047	0.036	0.034	0.027
	ratio:HD07	0.8	2.6	2.6	3.9
СО	HD07	0.190	0.144	0.144	0.175
	2002	0.185	0.101	0.101	0.151
	ratio:HD07	1.0	0.7	0.7	0.9
NOx	HD07	0.026	0.026	0.012	0.007
	2002	0.024	0.024	0.009	0.008
	ratio:HD07	0.9	0.9	0.8	1.1
DM	LIDOZ	0.050	0.050	0.022	0.025
PM	HD07	0.058	0.058	0.032	0.035
	2002	0.473	0.473	0.473	0.473
* Thomas and	ratio:HD07	8.2	8.2	14.8	13.5

* These are values for A in the equation: DF = 1 + A*(fraction of useful life expended)

Diesel Engine Scrappage: Median Life

We adjusted the median life for <16 hp engines to match that for 16-50 hp engines, to avoid median lives shorter than the regulatory useful lives; 2500 hrs at full load equates to 5000 hrs at a 50% typical average load factor (the regulatory useful life for these engines is 3000 hr).

Power Category	Source: PSR	Source: EEA	Modified EEA
<16 hp	13,000 hrs	1,250 hrs	2,500 hrs
16-50 hp	10,000 hrs	2,500 hrs	2,500 hrs
50-300 hp	11,500 hrs	4,000 hrs	4,667 hrs
300-1000 hp	9,000 hrs	6,000 hrs	7,000 hrs
>1000 hp	7,500 hrs	6,000 hrs	7,000 hrs

We removed EEA's "rugged life" adjustment:

EEA shortened the highway-derived median lives by 15% to account for the more severe operating conditions of nonroad engines. However, nonroad engine designs typically already account for this (mainly by use of de-rated bigger engines); so we removed the 15% adjustment.

Inputs: Equipment Population

 Population = f(sales, activity, load factor, median life)

- For diesel equipment, we now use PSR sales data to calculate populations, rather than using PSR populations directly.
 - Allows consistent median life and LFs
 - Decreased diesel Pops by ~25%

Default Inputs in the NONROAD model: Recreational Equipment and Large Spark-Ignition Engines

Recreational Equipment

- Applications
 - Snowmobiles
 - All-terrain vehicles (ATVs)
 - Off-Highway Motorcycles (OHMCs)
- Include two-stroke and four-stroke engines
- Substantial changes in most inputs since release of HDD 2007 NONROAD

Emission factors Load factor

Deterioration factors Median Life

Activity

Large Spark-Ignition Equipment (SI Engines Rated @ 19 kW)

- Commercial/Industrial
 - Forklifts
 - Generators
 - Commercial Turf
 - Aerial Lifts
 - Pumps
- Marine Engines
 - Stern drive
 - Inboard

- Include 2-stroke and 4stroke engines
 - Multiple fuels
 - Gasoline
 - LPG
 - CNG

Large Spark-Ignition Equipment: Changes to NONROAD Inputs

- Emission factors
- Add Transient Adjustment Factor (TAF) for HC, CO (large-SI only)
- Deterioration factors, all engines
- Stern-drive and Inboard marine engines
 - Emission Factors
 - Technology mix (carbureted vs. fuel-injected)
 - Median Life
- Activity and base-year population, forklifts

Large Spark-Ignition Equipment: Transient-Adjustment Factor

 <u>Definition</u>: coefficient representing the difference between steady-state cycle results and in-use transient operation

$$\frac{\mathsf{TAF}}{\mathsf{E}} = \frac{\mathsf{E}_{\mathsf{transient}}}{\mathsf{E}_{\mathsf{steady}} - \mathsf{state}}$$

- <u>Results:</u> HC TAF = 1.30 CO TAF = 1.45
- Application: $E_{\text{base}} = E_{\text{ss}} \times \text{TAF}$
 - TAF applied outside of model

Large Spark-Ignition Equipment: Deterioration Factors

- Previous assumption: Large-SI engines deteriorate similarly to small-SI engines
- Revised assumption: Large-SI engines deteriorate similarly to pre-controlled highway engines (MY 1960-79)

$$d = \left(\frac{\mathsf{E}_{\mathsf{det},100,000}}{\mathsf{E}_{\mathsf{base}}}\right) - 1$$

Large Spark-Ignition Equipment: Deterioration Factors

Results: (value in table = 1+d)

Pollutant	HDD07	NR2002
THC	2.1	1.26
CO	1.9	1.35
NOx	1.0	1.03
PM	2.1	1.26

Marine SD/I Engines:

- EFs revised based on tests of 10 SD/I engines
 - Carbureted and Fuel Injected
- Technology phase-in revised for FI engines
- Median Life now capped at 20 years
 - More reasonable than default of 3,000 hours at full load ≈ 300 years

Technical Developments in the NONROAD Model: Code Modifications

Code Modifications/Corrections PM Calculation Equation

Code Modifications/Corrections

- PM Calculation Equation -- Effect of Corrections:
 - Depends on equipment Hp
 - Net fleet inventory effect is substantial decrease in PM

Code Modifications/Corrections

- SO₂ Calculation Equation
 - Was missing Load Factor
 - Net effect of correction is to decrease SO_2 by roughly 40%

Code Modifications/Corrections

- Scrappage & Age Distribution
 - New simplified method:
 - 1. Use growth to determine target calendar year population
 - 2. Apply default age distribution based on scrappage curve shape and no growth
 - 3. Adjust for assumed growth rate

Scrappage / Age Distribution

Geographic Allocation in Draft NONROAD2002

Geographic Allocation: Overview

- Geographic allocation of engine populations accounts for how many and what types of equipment are being used in a certain location
 - Default data allocates to the county level
- National populations allocated outside NONROAD to county level using countyspecific surrogate indicators
- County populations are then aggregated to produce default state population input files

Geographic Allocation: Overview

• NONROAD allocates state-level default populations (N_{state}) for each equipment type to the county level using the surrogate indicators (A) $N_{\text{county}} = N_{\text{state}} \left(\frac{A_{\text{county}}}{A_{\text{state}}} \right)$

 Allocating equipment populations represents geographic differences in total population·activity

 NONROAD uses a single default activity (hours/year) for each equipment type for all of U.S.

Geographic Allocation: Overview

- Users may specify local state/county surrogates or substitute local population data
 - For broad equipment categories or for individual equipment types
 - Local activity data needs to be used with local population data in order to avoid strange results
- Allocation surrogates based on publicly available data as much as possible
 - U.S. Census population/housing, business, and geographic data.
 - Exception for construction which was based on proprietary data from F.W. Dodge, Inc.

Geographic Allocation: Construction Equipment

- Allocated on basis of weighted-average dollar value of different types of construction activity
 - Road and infrastructure construction account for much larger share of actual equipment activity per dollar valuation than residential and commercial construction
 - Based on 1998 survey of construction in Houston (for purposes of SIP)
 - Compares well to 1993 study of construction
 - Equipment activity based on fuel cost per project
 - Dollar valuation derived from 1987 Census data

Geographic Allocation: Snowblowers

- Two allocation surrogates used to derive state population estimates
 - Residential: single and duplex housing
 - Commercial: number of employees in landscaping/horticultural services
- Apply surrogates in states/counties with minimum snowfall
 - NOAA long-term average snowfall map combined with U.S. counties map
 - 15 inches minimum snowfall

Geographic Allocation: Snowmobiles

- State populations derived from registration data
 - Oakridge National Laboratory (ORNL) study
 - ORNL also attempted to account for unregistered snowmobiles
- Allocation to states/counties with minimum annual average snowfall of 40 inches
 - Average snowfall data from NOAA
 - Inverse human population used to allocate snowmobiles to counties
 - Majority allocated to rural counties
 - Except Alaska (which is almost all rural), for which human population is used directly

Geographic Allocation: Recreational Marine

- Nation-State Allocation: population allocated on basis of estimated 1992 gasoline use
 - Results from ORNL Non-highway Gasoline Use Estimator Model
- State-County Allocation: Water surface area
 - Adjustments to water surface area allocation create two separate allocation surrogates for inboards and outboards/PWCs
 - Reflects assumption that inboards operate up to 2 miles offshore; outboards and PWCs operate up to a quarter mile from shore
 - Results in more inboard boats allocated to coastal counties and outboards and PWCs allocated to inland bodies of water

Basis for Comparison

- Time Period: Calendar Year 1999
- HDD 2007: national estimates using June-2000 version with national defaults
 - current publicly available version
- NR 2002: national estimates from 1999 NEI, final version 2
 - sums of county inventories
 - recently released to states

Inventory Comparison: VOC

Inventory Comparison: CO

Inventory Comparison: NO_x

Inventory Comparison: SO_x

Inventory Comparison: PM₁₀

Inventory Comparison: Diesel Fuel Consumption

Inventory Comparison: SI + Diesel

Inventory Comparison: SI + Diesel

Model Release: Tied to Nonroad Rulemaking

Milestone

- Draft Release at time of NPRM
- Comment Period
- Final Release after FRM

<u>Date</u>

Spring 2003

• 60 days

Spring 2004

Guidance: NONROAD in SIPs

- Draft NONROAD is currently the best tool available for estimating regional nonroad inventories.
- With the release of the Nonroad NPRM, Draft NONROAD2002 is now publicly available.
- Draft NONROAD can be used in official SIP submissions to EPA.
- States need to be aware that Draft NONROAD is likely to undergo further revisions before it is finalized next year.